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ABSTRACT 
The aim of the present investigation was to study numerically the natural convection in partitioned 
enclosures with localized heating from below. Two-dimensional equations of conservation of mass, 
momentum and energy, with the Boussinesq approximation are solved using finite difference method. 
Various geometrical parameters were: aspect ratio A = 0.4-0.6, isothermal surface length B = 0.5, its 
position C = 0.3, partition position D = 0.5-1.0, its length E = 0.2-0.6, heat source length X = 0.05-1.00, 
and its position ε = variable. The Rayleigh number was varied from 103 to 106. The results are reduced 
in terms of the normalized Nusselt number as a function of the Rayleigh number, and other non-dimensional 
geometrical parameters. The isotherms and streamlines are produced for various Rayleigh numbers and 
geometrical conditions. 

KEY WORDS Natural convection Finite difference discretization 

NOMENCLATURE 

A aspect ratio, H'/L' 
B dimensionless length of isothermal 

surface, h'/H' 
C dimensionless position of isothermal 

surface, h′1/H' 
D dimensionless position of the partition, 

L"/L' 
E dimensionless partition length, h″1/H' 
h' length of the isothermal surface (m) 
h′1 position of the isothermal surface (m) 
h″1 partition length (m) 
H' cavity height (m) 
k thermal conductivity of fluid (W/m·K) 
L′1 position of the heated element (m) 
L′2 length of the heated element (m) 
L' cavity width (m) 
L″ position of partition (m) 
Nu normalized mean Nusselt number, (8) 
Pr Prandtl number, v/α 
q' constant heat flux (W/m2) 

Ra Rayleigh number, (gβq'H'4)/(kvα) 
t dimensionless time, t'α/H'2 

T dimensionless temperature, 
(T' - T'c)/(q'H'/k) 

u, v dimensionless velocities in x and y 
directions, (n', v')H'/α 

x, y dimensionless Cartesian coordinates, 
(x',y')/H' 

X dimensionless length of the heated 
element, L'2/L' 

Greek 
α thermal diffusivity of fluid (m2/sec) 
β volumetric coefficient of thermal 

expansion ( K - 1 ) 
ε dimensionless position of the heated 

element, (L'1 + L'2/2)/H' 
Ω dimensionless vorticity, Ω'H'2/α 
v kinematic viscosity (m2/sec) 
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ρ fluid density (kg/m3) 
Ψ dimensionless stream function, Ψ'/α 

Subscript 
C cold wall 

loc local 
W heated wall 

Superscript 
dimensional variables 

INTRODUCTION 

In direct gain passive systems, the solar radiation transmitted through the window strikes the 
internal surfaces of the dwelling. In steady state conditions, the dwelling air being 
quasi-transparent to incoming radiation, the radiation is absorbed by the internal surfaces, which 
is in turn transferred in part by infra-red radiation and in major part by natural convection to 
the dwelling air. The energy gained is lost, in major part, through quasi-isothermal windows, 
which are in contact with outside air at constant temperature. The dwelling internal and external 
surfaces are usually well insulated, therefore they are quasi-adiabatic. In general, the dwelling 
may be made of two adjacent rooms connected with a passage way. Both rooms may have 
windows opposite to each other. The solar radiation through a window is received and absorbed 
by the bottom surface. Therefore, the length and position of the heated surface depend on the 
sun's position, window's geometry and its orientation. The absorbed heat is usually transferred 
to the air by a constant heat flux. The overall system thermal performance is determined by 
various parameters, such as window size, its orientation, thermal resistance, thermal 
characteristics of the internal surfaces and position of the sun. The problem can be simplified 
by considering the dwelling as a two-dimensional enclosure with one passage way and two 
opposite windows. Further, heat transfer by infra-red radiation and conduction with respect to 
natural convection may be neglected. With these assumptions, the problem becomes one of 
natural convection heat transfer in two-dimensional partitioned enclosures with localized heating 
from below. 

A literature review shows that most of the previous work has addressed natural convection 
in enclosures due to either a vertically or horizontally imposed temperature difference. However, 
little work has been carried out on flows driven by localized heating from below, one side or 
both. Torrance and Rockett1 numerically studied the convection of air, in a vertical cylindrical 
enclosure, induced by a small hot spot centrally located on the bottom. The theoretical flows 
were in good agreement with the experimental results2. Tamotsu et al.3 experimentally and 
numerically investigated natural convection in a rectangular enclosed cavity, of which a part of 
the bottom was heated and the other walls were kept at a low constant temperature. The 
influence of the Rayleigh number, up to Ra = 6.9 × 105, was discussed. The natural convection 
in an inclined box with the lower half surface heated and the other half insulated was investigated 
experimentally and numerically by Chao et al.4. It was found that the asymmetry due to insulating 
half of the heated surface resulted in circulations for all positive Rayleigh numbers. An 
experimental investigation was conducted by Kamotani et al.5 to study natural convection heat 
transfer in a water layer with localized heating from below. The problem of multiplicity of 
solution and heat transfer in rectangular cavities partially heated from below was also studied 
earlier by Hasnaoui et al.6. In this problem, the upper surface was cooled at a constant 
temperature and a portion of the bottom surface was isothermally heated while the rest of it 
and the vertical walls were adiabatic. 

The aim of the present study was to study numerically the natural convection in 
two-dimensional partitioned enclosures with localized heating from below. Part of the two 
vertical surfaces representing windows is assumed to be isothermal, the rest adiabatic. 
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PROBLEM FORMULATION 

The study domain is a two-dimensional rectangular enclosure of dimensions L' × H' with a 
partial partition as shown in Figure 1. A portion of the bottom releases energy with a constant 
flux q'. The other portions are adiabatic, except part of the vertical surfaces, which is maintained 
at a constant temperature T'c. The heated element is identified by its position 
(ε = (L'1 + L'2/2)/H') and its length (X = L'2/L'). If the flow and heat transfer are 
two-dimensional and the Boussinesq approximation holds, the dimensionless governing 
equations are written as: 

where 

Equations (1) to (5) have been reduced to dimensionless form by introducing the scales defined 
in the Nomenclature. 

No slip boundary conditions are considered for velocity components along the walls. The 
vorticity boundary values were calculated from the second order approximation of Woods7. 
For the temperature, the following conditions are used: 

where the direction of n is the normal to the surface element considered. 
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The governing equations, with boundary conditions, complete the formulation of the problem. 
The controlling parameters are Ra, Pr, A, B, C, D, E, ε and X (see Figure 1). 

The local heat transfer on the heating element, which is submitted to a constant heat flux q', 
is calculated as: 

The isothermal surface temperature T'c, is considered as reference temperature. The mean 
normalized Nusselt number on the heating element is calculated as: 

where Q is given by: 

where Qc is the mean dimensionless heat transfer by pure conduction on the heating element 
surface calculated with (9) for Ra = 0. 

NUMERICAL METHOD 

The conservation equations (1) to (3) describing the flow and temperature fields in this problem 
were solved numerically using a finite-difference discretization procedure. Central-difference 
formulae were used for all spatial derivative terms, in the vorticity, energy and Poisson equations. 
A modified alternate direction implicit procedure was adapted to obtain from (1) and (3) the 
vorticity and temperature profiles. The finite-difference forms of the vorticity and energy equations 
were written in conservative form for the convective terms to preserve the conservative property8. 
Values of the stream function at all grid points were obtained with (2) via a successive 
over-relaxation method. Suitable values for the relaxation parameters were between 1.78 and 
1.92. The velocities at all grid points were determined with (4) using updated values of the 
stream function. For each time step, the convergence criterion was: 

For the present work, uniform mesh sizes were used for both x and y directions. The boundary 
condition on the partition was ensured by using three grid points within its thickness. To study 
the effect of the thickness on the result, four and five grid points were also tried which showed 
a negligible effect. The grid sizes of 41, 61, 81, 161 in x direction with 21 in y direction were 
tried for various cases. For example, with Ra = 106 the results from various grid sizes compared 
to those with 161 × 21 showed that the maximum deviations were 0.9% in energy conservation, 
3.25% in heat transfer, 1.02% in normalized Nusselt number and 1.97% in Ψmax. In view of 
the possible singular behaviour at the mixed boundaries9, variations of Ψmax and Nu with time 
were examined in each case and proper convergence to a steady state solution was ensured. 
Thus, most of the computations were carried out with 61 or 41 × 21 grid size. To ensure the 
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precision in some of the studies, computations were also carried out using 81 or 161 x 21 grid 
size. These will be pointed out when appropriate. Various time step sizes were tried and 0.0002 
was used for most of the simulations. 

The accuracy of the numerical model was verified by comparing results from the present 
investigation with several results reported in the literature10. Maximum differences were within 
4% of the results compiled and discussed by De Vahl Davis and Jones11. The numerical model 
was validated also with that by Hasnaoui et al.6 who studied the problem of rectangular cavity 
partially heated from below; the agreement was excellent. 

RESULTS AND DISCUSSION 

Flow fields, temperature fields and heat transfer rates for ranges of Rayleigh numbers from 103 

to 106 are examined. The size of the isothermal sink B = 0.50, and its position C = 0.30 were 
kept constant. The aspect ratio A was varied from 0.40 to 0.60. The position of partition D was 
varied from 0.50 to 1.00, the size of the heat sources X from 0.05 to 1.0, the position of the heat 
source ε from 0 to 1 and the partition size E from 0.20 to 0.60. All results are presented for 
Pr = 0.72. First the results with A = 0.50, D = 0.5 and E = 0.20 will be presented and then their 
influences will be discussed. 

The streamlines and isotherms for Ra = 106, D = 0.5, X = 0.25 and for various positions of 
the localized heat source e are shown in Figures 2a-2c and for various X in Figures 2d and 2e. 
In these Figures, the heat source is shown with a thick line and the isothermal sink with a thin 
line; the negative values of the stream function show a counter-clockwise circulation in the 
enclosure. 

Figures 2a-2c show the effect of heat source position. When the heat source is at the corner, 
a large clockwise circulating cell is formed, which is responsible for transporting energy to the 
left and right isothermal sinks. The small cell above the large cell near the left upper part 
circulates counter-clockwise. The isotherms show a steep gradient of temperature above the heat 
source within the large cell. As the position of the heat source shifts towards the centre, Figure 
2b shows two cells formed above the heat source, one counter-clockwise rotating cell near the 
left isothermal sink and another elongated, clockwise rotating cell on the right. The strength of 
the circulation is slightly larger in the counter-clockwise rotating cell. The isotherms show steep 
temperature gradients near the heat source and the left heat sink, with more heat transfer to 
the left. For the heat source positioned at the centre in Figure 2c, two symmetric cells are formed 
above the heat source, one on the left rotating counter-clockwise and the other on the right 
clockwise. The isotherms show a symmetric case with identical temperature gradients and heat 
transfer to both sides. Streamlines and isotherms (not shown here) were identical for ε = 1.50 
and 1.75, which corresponded to the positions symmetric with respect to the centre of the 
enclosure. The effect of the heat source size is shown in Figures 2d, b and e for X = 0.15, 0.25 
and 0.50 respectively. Streamlines and isotherms show similar trends, the strength of 
counter-clockwise circulation increasing with X: Ψmin = −14.59 for X = 0.15, −16.48 for 
X = 0.25 and -20.25 for X = 0.50. 

For constant geometrical parameters of A = 0.5, B = 0.5, C = 0.3, the mean normalized 
Nusselt number on the heat source at various Rayleigh numbers for various X and ε is calculated 
and shown in Figures 3 a to f. At Ra = 103, the heat transfer is dominated by conduction for 
all X and ε. For small size of heat source, X and position, ε the heat transfer is still dominated 
by conduction at higher Rayleigh numbers. In Figure 3a for X = 0.05 and ε = 0.05, which is 
almost a point heat source at the corner, the conduction dominant regime is observed up to 
Ra = 105. For ε = 0.50 and 1.00, the heat transfer is by conduction up to about 104. Similar 
trend is observed in Figure 3b and 3c for ε = 0.15 and 0.25. For increasing Rayleigh number 
and size of heat source, the contribution of natural convection increases. Figures 3a to f show 
that Nu is an increasing function of X and with the exception of Figures 3a and 3b at high Ra, 
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an increasing function of ε. This is to be expected as the heat released will increase proportionately 
with the size of heat source. Also, as it was observed earlier with Figure 2, the convection 
increases for heat source positioned more centrally. The reason for the lower heat transfer in 
Figures 3a and 3b when ε increases from 0.50 to 0.60 to 1.00 at high Ra is explained by examining 
the streamlines at Ra = 106. It was seen (not shown here) that the strength of circulation 
decreased in both cases with increasing ε. As discussed with Figure 2, the cases with ε = 1.00 
resulted in identical heat transfer for a given X and Ra due to the symmetry of the problem. 

Similar results are produced for D = 0.75 with the other constant parameters being the same. 
Streamlines and isotherms for the case of X = 0.5 and Ra = 106 for various ε are shown in 
Figure 4. Figure 4a shows that for the case of heat source attached to the left corner two cells 
are formed above the heat source, one counter-clockwise on the left and the other clockwise 
rotating and elongated on the right. Their strengths of circulation are Ψmin = −20.29 and 
Ψmax = 15.55 respectively. Figure 4a shows that the partition acts like a barrier and heat transfer 
is stronger to the left. The isotherms show steep gradients above the heat source and on the left 
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isothermal sink. When the heat source is in the centre of the enclosure, Figure 4b shows that 
the problem is asymmetric, with two counter-rotating cells. The strengths of circulation are 
Ψmax = 16.93 and 15.4984, which show a slightly more favourable heat transfer to the left. Figure 
4c shows the case when the heat source is on the right attached to the corner. The strengths of 
circulation are Ψmax = 16.07 and 20.1439, showing more favourable heat transfer to the right. 
The isotherms show steep gradients on the heat source and on the right, supporting this 
observation. 

The normalized mean Nusselt number at various Rayleigh numbers is calculated for these 
cases and the results are presented in Figures 5a-5e. The size of heat source is from X = 0.05 
in Figure 5a to X = 1.0 in Figure 5e. The corresponding positions ε are shown in each Figure. 
It is noticed that the observations and comments made with Figure 3 apply also here with small 
differences. Further studies obtained for various other D (not shown here) showed similar results 
with small quantitative differences. These will be discussed next by taking D as parameter. 

The normalized mean Nusselt number as a function of the partition position is calculated for 
Ra = 106, and various ε and X. The other parameters are A = 0.50, B = 0.50, C = 0.30 and 
kept constant. Due to symmetry of the problem, D was varied from 0.5 to 1.0, the latter being 
the limiting case with the partition attached to the enclosure wall (or without partition). The 
results are presented in Figure 6. As expected, the results show that the normalized mean Nusselt 
number increases with increasing c and increasing X. It is observed that the variation of the 
normalized mean Nusselt number with the partition position, D is not discernible when X not 
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too large and small variation is present when X ≥ 0.75. This indicates that a short partition of 
E = 0.30 has only little effect on the heat transfer from relatively small heat sources to the 
isothermal sinks. A slight decrease is observed for the cases of X = 0.75 and 1.00 with increasing 
D. An examination of the streamlines and isotherms for this case showed a slight decrease of 
convection with increasing D, which has also been verified by using 181 x 21 grid size. For 
instance, for X = 1.00, ε = 1.00, Ψmax was ± 19.94 at D = 0.50 and ± 19.35 at D = 1.00. This 
shows that the presence of the partition is to enhance slightly the natural convection. 

The effect of the dimensionless partition length is studied for A = 0.50, B = 0.50, C = 0.3, 
D = 0.50, X = 0.25 and Ra = 106 and various ε. The normalized mean Nusselt number as a 
function of E = h″1/H' from 0.20 to 0.60 is shown in Figure 7. It is seen that the variation of 
the normalized mean Nusselt number for various ε does not follow a systematic trend. For 
ε = 0.25, Nu passes from a minimum, for 0.50 it is a decreasing function of E and for 1.00 it is 
independent of E. It was seen that the mean Nusselt numbers without normalization followed 
the same trends for three ε values and the heat transfer by conduction was identical for a given ε. 

To find out the reason for the observed trends, the streamlines and isotherms are examined. 
The case with E = 0.30 and for the three ε are shown in Figures 2a to 2c. Those for the other 
two cases at E = 0.40 and 0.60 are presented in Figure 8. For ε = 0.25 and E = 0.20, Figure 2a 
shows a large clockwise circulating cell with a small anti-clockwise circulating cell at the corner. 
Ψmax and Ψmin are respectively +15.09 and −4.88. The heat transfer is by the large clockwise 
rotating cell effectively to the two sides. For E = 0.40 Figure 8a shows two cells, a large clockwise 
circulating cell with decreased strength ( + 10.53) and the other, anti-clockwise circulating with 
increased strength ( − 14.11). The heat transfer is mainly by the anti-clockwise cell and in a 
lesser degree by the clockwise cell. Due to competition between the two, the heat transfer is 
reduced to the right hand side with respect to E = 0.30 case. For E = 0.60 Figure 8d shows two 
cells, the clockwise circulating cell with slightly reduced strength (+ 9.87) and the other with 
further increased strength ( − 18.90). The heat transfer in this case is enhanced and is mainly 
by the anti-clockwise cell with additional contribution by the clockwise cell. The isotherms show 
steep gradients near the left side for E = 0.30. The gradients become smaller for E = 0.40 and 
increasing again with increasing E at 0.60. 

For ε = 0.50 Figure 2b and Figures 8b and 8e show similar phenomena: the strength of 
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clockwise cell decreases with increasing E (from + 11.75 to + 10.95 and then + 10.75) and that 
of the anti-clockwise increases slightly with E (from −16.03 to −17.07 and then −17.35). Thus, 
the heat transfer is decreased with increasing E that can also be seen from the isotherms for this 
case. 

Figure 2c and Figure 8c and 8f show for ε = 1.00 that increasing partition length has the effect 
of splitting the two cells towards the isothermal heat sinks. But there is not a discernible difference 
in heat transfer. 

The effect of the aspect ratio A on the heat transfer is studied for B = 0.50, C = 0.30, D = 0.50, 
E = 0.20, X = 0.25, Ra = 106 and various ε. The normalized mean Nusselt number as a function 
of A is shown in Figure 9. It should be noted that for a constant L', smaller A corresponds to 
smaller H' and X = 0.25 corresponds to a constant heat source length L'2. However, ε becomes 
variable for a given position of heat source since it is normalized with H'. In Figure 9, curve 
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(a) corresponds to ε = 1 (i.e., the heat source is located at the centre), (b) corresponds to 
ε = 0.5 and (c) to ε = 0.25 (i.e., heat source is attached to the left corner), all at A = 0.50. 
Further, since Ra is defined with length scale H', for a constant Ra, heat flux is larger for smaller 
A. Figure 9 shows that Nu is a decreasing function of A for a given position of heat source and 
when the heat source is located at more off centre. An examination of the mean Nusselt numbers 
(non-normalized) showed that they were also decreasing functions of A and heater position for 
all the cases. This is expected since, for a constant Ra, smaller A corresponds to larger heat flux 
from a heat source of the same size. Also, heat transfer is larger when the heat source more 
centrally located in the enclosure. Hence, the heat transfer to the isothermal surfaces becomes 
enhanced for smaller A with the other parameters being kept the same. 

CONCLUSIONS 

A numerical study of natural convection heat transfer in two-dimensional partitioned enclosures 
with localized heating from below has been carried out. The solutions have been obtained by 
solving the Navier-Stokes and energy equations, using the Boussinesq approximation. The 
following conclusions are drawn: 

(i) heat transfer becomes dominated by natural convection at lower Rayleigh numbers when 
the length of heat source is bigger and its position is more central in the enclosure; 

(ii) position of partition and its length have little effect on heat transfer for a given Rayleigh 
number. Small effects of partition position are produced when length of heat source is large and 
its position is central. Also, small effects of partition length are observable when position of 
heat source is more off centre; 

(iii) for a given condition, the heat transfer is enhanced when the enclosure aspect ratio is 
smaller. 
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